Private Pilot (ASEL) Ground School Course
 Lesson 10 | Weight and Balance

Lesson Overview

Lesson Objectives:

- Develop a knowledge of aircraft weight and balance terms and principles.
- Develop an understanding of to correct weight and balance issues.
- Skill to correctly determine through calculation if an airplane is loaded within limits.

Lesson Completion Standards:

- Student demonstrates satisfactory knowledge of weight and balance by answering questions and actively participating in classroom discussions.
- Correctly calculates a weight and balance problem.

Weight \& Balance

- All airplanes have limits on the maximum weight they can carry and where that weight is placed within the airplane
- Within these limits, airplanes perform normally; outside of them, they behave erratically
- Structural damage and in-flight stability are the two most important reasons why an airplane's weight is restricted, and why the weight must be distributed in a certain way
- Calculating whether the plane is within its stated restrictions is referred to as doing a weight-and-balance calculation
- Crucial part of preflight planning

Terms

Weight and Balance

Weight and Balance Terminology

- Note: Terms defined by the General Aviation Manufacturers Association as industry standard are marked with GAMA

Weight Terms

- Standard Empty Weight (GAMA): Aircraft weight that consists of the airframe, engines, and all items of operating equipment that have fixed locations and are permanently installed in the aircraft, including fixed ballast, hydraulic fluid, unusable fuel, and full engine oil
- Basic Empty Weight (GAMA) - Standard empty weight plus the weight of optional and special equipment that have been installed
- Licensed Empty Weight - The empty weight that consists of the airframe, engine(s), unusable fuel, and undrainable oil plus standard and optional equipment as specified in the equipment list (prior to GAMA standardization)

Weight Terms

- Fuel Load: The expendable part of the load of the aircraft (includes only usable fuel)
- Useful Load: Weight of the pilot, copilot, passengers, baggage, usable fuel, and drainable oil (is the basic empty weight subtracted from the MAGW)
- Payload (GAMA): Weight of occupants, cargo, and baggage
- Gross Weight = Empty Weight + Useful Load

Weight Terms

- Standard Weights: Established weights for numerous items involved in weight and balance computations
- Gasoline: $6 \mathrm{lb} / \mathrm{gal}$
- Jet A, Jet A-1: $6.8 \mathrm{lb} / \mathrm{gal}$
- Jet B: $6.5 \mathrm{lb} / \mathrm{gal}$
- Oil: $7.5 \mathrm{lb} / \mathrm{gal}$ (not quarts)
- Water: $8.35 \mathrm{lb} / \mathrm{gal}$

Weight Terms

- Maximum Zero Fuel Weight (GAMA): Maximum weight, exclusive of usable fuel
- Maximum Ramp Weight: Total weight of a loaded aircraft including all fuel (greater than the takeoff weight due to the fuel that will be burned during the taxi and run-up operations)
- Maximum Takeoff Weight: Maximum allowable weight for takeoff
- Maximum Landing Weight: Greatest weight an aircraft can have at landing

CG Terms

- Center of Gravity (CG): Point about which an aircraft would balance if it were possible to suspend it at that point (expressed in inches from the reference datum or in percent of MAC)
- CG Limits: Specified forward and aft points within which the CG must be located during flight (are indicated on pertinent aircraft specifications)
- CG Range: Distance between the forward and aft CG limits indicated on pertinent aircraft specifications

More Terms

- Moment Index: Moment divided by a constant such as 100, 1,000, or 10,000 to simplify weight and balance computations of aircraft where heavy items and long arms result in large, unmanageable numbers
- Station: Location in the aircraft that is identified by a number designating its distance in inches from the datum (datum is identified as station zero - an item located at station +50 would have an arm of 50 inches)
- Delta: Greek letter expressed by the symbol Δ indicate a change of values (\triangle CG indicates a change or movement of the CG)
- Floor Load Limit: Maximum weight the floor can sustain per square inch/foot as provided by the manufacturer

Effect of Weight and Balance on Performance

Weight and Balance

Excessive Weight And Structural Damage

- Airplane wings are designed to support a certain amount of weight
- Excessive weight can damage a wing
- Airplanes are designed to be flown up to a specific maximum gross weight
- While it's possible to become airborne beyond this maximum certified weight, structural problems can arise when turbulence or high-G maneuvering is experienced

Excessive Weight And Structural Damage

- If an airplane is certified in the utility category, it can withstand 4.4 positive Gs without structural damage
- If it has a maximum gross weight of 2,000 pounds, its wings are certified to withstand 4.4 times the maximum gross weight of 2,000 pounds or a total of 8,800 pounds
- Distributing 8,800 pounds of force over the wings will bend them slightly
- When the force is removed, the wings will flex back to their original position

Excessive Weight And Structural Damage

- Suppose you take off in the same airplane with a gross weight of 2,100 pounds
- The airplane will still become airborne when only 100 pounds over gross weight
- What happens if turbulence is encountered, and you experienced 4.4Gs?
- The airplane must now support 9,240 pounds of weight (4.4 X 2, 100)
- That's 440 pounds beyond the 8,800 pounds the engineers designed the structure for

Effects of Weight

- An overloaded aircraft may not be able to leave the ground
- If it does become airborne, it may exhibit unexpected and unusually poor flight characteristics

Performance Deficiencies of an Overloaded Aircraft

- Higher takeoff speed
- Longer takeoff run
- Reduced rate and angle of climb
- Lower maximum altitude
- Shorter range
- Reduced cruising speed
- Reduced maneuverability
- Higher stalling speed
- Higher approach and landing speed
- Longer landing roll
- Excessive weight on the nose wheel

Weight Changes

- The operating weight of an aircraft can be changed by altering the fuel load
- Gasoline weighs 6 pounds per gallon
- Thirty gallons of fuel may weigh more than one passenger
- If a pilot lowers airplane weight by reducing fuel, the resulting decrease in the range of the airplane must be taken into consideration during flight planning

Weight Changes

- During flight, fuel burn is the only weight change that takes place
- As fuel is used the aircraft becomes lighter and performance is improved
- The installation of extra radios or instruments, as well as repairs or modifications, affect the weight of an aircraft

Center of Gravity

- CG of any object is the point where the object would balance
- CG is precisely at the center for an object whose weight is evenly distributed along its length
- For an airplane, where weight is not distributed evenly along its length, you must calculate where the CG is

ALL OBJECTS HAVE A CENTER OF GRAVITY (CG)

Regardless of what the object is,it has a center of gravity. A block of cheese, wrenches, tape cassette drives, and whales, as well as airplanes have a place where they would balance if picked up at that point. This point is known as the center of gravity.

Balance, Stability, and Center of Gravity

- Balance refers to the location of the CG of an aircraft
- The CG is a point at which the aircraft would balance if it were suspended at that point
- The primary concern in balancing an aircraft is the fore and aft location of the CG along the longitudinal axis
- The CG is not a fixed point
- CG location depends on the distribution of weight in the aircraft
- As variable load items are shifted or expended, there is a resultant shift in CG location

CG Displacement

- Too far forward causes noseheavy condition
- Too far aft causes a tail-heavy condition
- It is possible the pilot could not control the aircraft if the CG location produced an unstable condition

Forward and Aft CG Limits

AN AIRPLANE'S FORWARD 8 AFT CENTER OF GRAVITY LIMIT

- Distance between forward and back limits for the CG range is certified for an aircraft by the manufacturer
- Located in AFM/POH
- Forward Limit located at position where full-up elevator/control deflection is required to obtain a high AOA for landing
- Aft Limit is the most rearward position at which the CG can be located for the most critical maneuver or operation

Forward and Aft CG Limits

- For an airplane to be positively stable, its weight must not be concentrated too far aft
- Weight concentrated too far forward may prevent sufficient pitch control to hold the nose up during landing

Longitudinal Stability

- If airplane returns to level flight after its controls are disturbed, it has positive dynamic stability, making it less difficult to control
- If airplane does not return to its original flight configuration, and keeps diverging farther from it in a series of oscillations, it has negative dynamic stability

AIRPLANE STABILITY IN FLIGHT

A Airplane loaded within proper CG limits $\begin{aligned} & \text { (positive dynamic stability) }\end{aligned}$
Amplitude of oscillations decrease

B Airplane loaded outside proper CG limits

Center of Lift (Center of Pressure)

- Point where wing's total lifting force is concentrated
- Sum of all the lifting forces spread across the wing
- At low AOA the CL is further back along the wing
- As the AOA increases the CL moves forward

THE CENTER OF LIFT

The center of lift is the point where the wing's total lifting force is concentrated. Think of it as the sum or the average of all the lifting forces spread across the wing (simulated by all the little black arrows). At low angles of attack the center of lift is found farther back along the wing as shown by wing A. As the angle of attack increases, all the little lifting forces move slightly. They tend to become more concentrated toward the front of the wing as shown by wing B. Therefore, as the angle of attack increases, the center of lift moves forward along the wing.

Small Angle of Attack

Large Angle of Attack

Airplanes are designed so that the center of lift always remains behind the center of gravity (assuming that your airplane is loaded properly). Since all objects rotate about their center of gravity, this causes the airplane to have a nose down pitching tendency. That's why the tail of an airplane must create a slight downward lifting force. This keeps the airplane from nosing end over end.

Center of Lift (Center of Pressure)

THE CENTER OF LIFT

The center of lift is the point where the wing's total lifting force is concentrated. Think of it as the sum or the average of all the lifting forces spread across the wing (simulated by all the little black arrows). At low angles of attack the center of lift is found farther back along the wing as shown by wing A. As the angle of attack increases, all the little lifting forces move slightly. They tend to become more concentrated toward the front of the wing as shown by wing B. Therefore, as the angle of attack increases, the center of lift moves forward along the wing.

Small Angle of Attack

Airplanes are designed so that the center of lift always remains behind the center of gravity (assuming that your airplane is loaded properly). Since all objects rotate about their center of gravity, this causes the airplane to have a nose down pitching tendency. That's why the tail of an airplane must create a slight downward lifting force. This keeps the airplane from nosing end over end.

- CL must always remain behind the CG
- Causes nose to pitch down
- Tail (horizontal stabilizer) must create a slight downward lifting force to balance nose down twist

Aft CG Loading

- If the CG is too far aft, the CL, at high AOA, might move ahead of the CG
- Airplane wants to pitch up and increase its angle of attack even more
- You must apply a lot of forward elevator control to get the nose to pitch down
- Under certain conditions (slow airspeeds and high angles of attack for instance) the airplane may not respond

Exceeding Aft CG Limit

- Decreased longitudinal stability
- Control difficulty
- Violent stall characteristics
- Very light control forces making it easy to overstress an aircraft inadvertently

Fwd CG Loading

- With CG ahead of the forward limit an excessive tail-down force is required to keep the nose up
- During landing, as the airplane slows, there may not be enough airflow over the tail to generate this tail-down force
- Excessive forward loading causes higher stalling speeds, decreased performance, and higher stick forces

FORWARD CG LOADING

Exceeding Forward CG Limit

FORWARD CG LOADING

- Excessive loads on nosewheel
- Tendency to nose over on tailwheel airplanes
- Decreased performance
- Higher stalling speeds
- Higher control forces

Variable CG Limits

- For some aircraft both fore and aft CG limits may be specified to vary as gross weight changes
- They may also be changed for certain operations:
- Acrobatic flight
- Retraction of the landing gear
- Installation of special loads and devices that change the flight characteristics

Weight Shifting

- Actual location of CG can be altered by many variable factors
- Placement of baggage and cargo items determines the CG location
- Assignment of seats to passengers can also be used as a means of obtaining a favorable balance
- If an aircraft is tail heavy place heavy passengers in forward seats
- Fuel burn can also affect the CG based on the location of the fuel tanks
- Most small aircraft carry fuel in the wings very near the CG and fuel burn has little effect on the CG

Wait a Moment ...Teeter Totters?

Moments

- To locate the center of gravity on an airplane you must find the moment
- Moment is a measure of the tilting force that weight imposes on an airplane

Moments

- Two 10-pound blocks placed on a plank at equal distances of five feet from the balance point
- The plank is perfectly balanced
- The plank's CG (balance point) is located at the fulcrum

Moments

- Plank's balance point is located at the fulcrum
- Block K causes the plank to tilt CCW (to the left)
- Block R causes a similar tilt but in the CW direction (to the right)
- This tilting force is the plank's moment

Moments

MOMENTS ARE TILTING FORCES

- Since the plank balances, the opposite tilting forces or moments caused by both blocks are opposite yet equal
- They cancel out each other and the plank remains balanced at the fulcrum

Moments

- Arm is the distance the weight is placed from the fulcrum
- Multiplying the weight times its arm is the moment
- A moment is the numerical value of the amount of tilt that an object produces
- CCW is minus; CW is plus
- Block K and Block R both produce the same moment (tilting force) of 50 lb -ft in opposite directions about the fulcrum

Moments

MOMENTS ARE TILTIING FORCES

- While Blocks P and Q have different weights, they produce the same moment about the fulcrum)
- By multiplying their weights times their arms, you obtain a moment (tilting force) of $50 \mathrm{lb}-\mathrm{ft}$ for both blocks
- Since the moments are equal but in opposite directions, the plank remains in balance

Finding CG When Weights \& Moments are Known

- Plank without a fulcrum
- Objective is to find where to place the fulcrum so the plank will balance
- Datum line is an arbitrary vertical reference line from which to measure distances

Find CG of Two Weights

- Objective: Find point past the datum where these weights would balance if a fulcrum was placed under the plank
- Find the moment of Block Z about the datum line
- Multiply Block Z's weight times its arm (its distance from datum line)
- Do the same with Block W

Find CG of Two Weights

- Add all weights and moments
- These are the total weights and moments produced by these weights

Find CG of Two Weights

DETERMINING THE POSITION OF THE CG IN RELATION TO THE DATUM LINE

(C) If: Weight x Arm $=$ Moment, Then Arm $=$ Total Moment Total Weight

$$
\underset{\text { (new CG) }}{\text { Arm }}=\frac{\text { Total Moment }}{\text { Total Weight }}=\frac{150 \mathrm{lb}-\mathrm{ft}}{15 \mathrm{lb}}=\underset{\text { (new CG) }}{10 \mathrm{ft}}
$$

D

- Dividing Total Moments by Total Weights equals the arm (distance) where the plank balances
- The arm represents the CG location of these two weights
- Finding the CG of an airplane is done in exactly the same way

Datum Line

- Can be placed wherever the design engineer chooses
- When located at the firewall, everything to the left of the datum line produces a negative value; and everything to the right a positive value
- Oil located to the left of a firewall datum line, produces a negative moment
- The negative moment must be subtracted from the total moments before dividing

Datum (Reference Datum)

- Imaginary vertical plane or line from which all measurements of arm are taken (established by the manufacturer; all moment arms and the location of CG range are measured from this point)

Piper Archer Datum

Cessna 172 Datum

Arm (Moment Arm)

- Horizontal distance in inches from the reference datum line to the CG of an item (plus if measured aft of datum and minus if measured forward of datum

Moment

- Product of the weight of an item multiplied by its arm
- Are expressed in pound-inches (in-lb)
- Total Moment is the weight of the airplane multiplied by the distance between the datum and the CG

Datums Station CG

Finding Moment or Arm

$$
\text { Weight } \times \text { Arm }=\text { Moment }
$$

$$
A r m=\frac{\text { Moment }}{\text { Weight }}
$$

$$
C G=\frac{\text { Total Moments }}{\text { Total Weight }}
$$

W/B Calculation

Weight and Balance

W/B Problem - Computational

- Airplane's empty weight along with the arm and moment is listed in the airplane's weight and balance papers
- The empty-weight arm is the point where the weight of the empty airplane is concentrated (its CG)
- This arm is used in computing the empty weight moment
- Arms for Front seat occupants, Fuel, and Oil WORKING AN ACTUAL CG PROBLEM
 are also given

W/B Problem - Computational

- The pilot and front passenger weigh a combined 380 pounds
- Both sit at an arm (distance) of 64.0 inches aft of the datum
- Multiply their weight and arm to get moment of 24,320 lb-in

WORKING AN ACTUAL CG PROBLEM

How far aft the datum is the CG located?

W/B Problem - Computational

- 30 gallons of usable fuel on this flight
- To find fuel weight multiply 30 times 6 pounds/gallon = 180 pounds
- The fuel tanks are located at an arm of 96.0 inches aft of the datum
- To find moment for fuel multiply 180 pounds times 96.0 inches $=17,280 \mathrm{lb}-$ in

WORKING AN ACTUAL CG PROBLEM

(A)

	Weight	$x \underset{\text { (inches) }}{\text { Arm }}$	$=$ Moment
Empty weight	1,495.0	101.4	151,593.0
Pilot \& front passenger	380.0	64.0	24,320.0
Fuel (30 gal. no reserve) 180.0 96.0 17,280.0			
Oil (8 qts)	15.0	32.0	+ 480.0

How far sfit the datum is the CG located?

W/B Problem - Computational

- Engine has 8 quarts of oil (4 quarts per gallon)
- Oil weighs 7.5 pounds per gallon, so total weight of oil is 2 gallons times 7.5 pounds = 15 lb
- Engine oil is located at an arm of 32.0 inches aft of the datum
- Multiply 15 pounds times 32.0 inches $=480 \mathrm{lb}-\mathrm{in}$

WORKING AN ACTUAL CG PROBLEM

(a)

| A) | Weight
 ((10) | $x \underset{(\text { (inches) }}{\text { Arm }}=$ | Moment |
| :--- | ---: | ---: | ---: | ---: |
| Empty weight | $1,495.0$ | 101.4 | $151,593.0$ |
| Pilot \& front passenger | 380.0 | 64.0 | $24,320.0$ |
| Fuel (30 gal. no reserve) | 180.0 | 96.0 | $17,280.0$ |
| OiH (8-qtc) | 15.0 | 32.0 | 480.0 |

How far aft the datum is the CG located?
(16-114)

W/B Problem - Computational

- Total the Weight column and the Moment column
- Total Moment = 193,673 in-lb
- Total Weight = 2,070 lb
- Ensure Total Weight is less than or equal to Maximum Gross Weight

WORKING AN ACTUAL CG PROBLEM

How far aft the datum is the CG located?

W/B Problem - Computational

- To find the CG for the loaded airplane divide the total moments by the total weights
- Weight X Arm = Moment
- Arm (CG) = Total Moments / Total Weight
- This arm is the point where the full airplane would balance (its Center of Gravity)

WORKING AN ACTUAL CG PROBLEM

©

Empty weight
 Pilot \& front passenger

Fuel (30 gal. no reserve)
Oil (8 qts)

$\underset{(\text { (b) }}{ }$ Weight	$x \underset{\text { (inches) }}{\text { Arm }}$	$=\underset{(i n-1 b)}{M o m e n t}$
1,495.0	101.4	151,593.0
380.0	64.0	24,320.0
180.0	96.0	17,280.0
15.0	32.0	480.0
$2, \overline{070 \mathrm{lb}}$		193,673 in-lb

How far aft the datum is the CG located?

```
(new CG)}=\frac{\mathrm{ Total Moment }}{\mathrm{ Total Weight }}=\frac{193,673 in-lb}{2,070 lb
```


W/B Problem - Computational

WORKING AN ACTUAL CG PROBLEM

 CG Limits (89.0")
Allowable Aft

CG Limits (97.3")

- CG = 93.6 in
- Forward and aft CG limits are expressed in inches past the datum line
- Determine if the CG is within the appropriate limits for safe flight
- Forward CG limit is at 89.0 inches and the aft limit is 97.3 inches
- With a CG of 93.6 inches the airplane falls within the proper CG limits

W\&B Tables

- Charts show moments for variable weights of occupants, usable fuel, baggage, auxiliary fuel and oil (oil for this airplane is included in the basic empty weight)

USABLE FUEL			
	MAIN WING TANKS		
ARM 75			
Gallons	Weight	$\frac{\text { Moment }}{100}$	
5	30	22	
10	60	45	
15	90	68	
20	120	90	
25	150	112	
30	180	135	
35	210	158	
40	240	180	
44	264	198	

AUXILIARY WING TANKS
AUXILIARY WING TANKS
ARM 94

		$\frac{\text { Moment }}{100}$
Gallons	Weight	
5	30	28
10	60	56
15	90	85
19	114	107

	*OIL	
Quarts	Weight	$\frac{\text { Moment }}{100}$
10	19	5

*Included in basic Empty Weight

W\&B Tables

- Chart shows that all the moments are divided by 100
- This is a reduction factor making large moments easier to work with
- Since the front seat arm is 85 , multiplying 85 inches \times 320 pounds $=27,200 \mathrm{lb}-\mathrm{in}$ of moment
- When divided by a reduction factor of 100 the moment becomes:
272 lb-in $(27,200 / 100=$ 272)

USEFUL LOADS WEIGHTS \& MOMENTS
OCCUPANTS

FRONT SEATS ARM 85		REAR SEATS ARM 121	
Weight	$\frac{\text { Moment }}{100}$	Weight	$\frac{\text { Moment }}{100}$
120	102	120	145
130	110	130	157
140	119	140	169
150	128	150	182
160	136	160	194
170	144	170	206
180	153	180	218
190	162	190	230
200	170	200	242

W\&B Tables

- Find the moment of the front seat occupants weighing 320 pounds
- Look in the weight column and find the moments for any weight combinations that add up to 320
- For instance:

120 lb produces a moment of 102200 lb produces a moment of 170

- Adding these together gives you a moment of 272
- Manual calculation:
$320 \times 85=27,200$
$27,200 / 100=272$

USEFUL LOADS WEIGHTS \& MOMENTS

OCCUPANTS

$\begin{gathered} \text { FRONT SEATS } \\ \text { ARM } 85 \end{gathered}$		$\begin{aligned} & \text { (2) REAR SEATS } \\ & \text { ARM } 121 \end{aligned}$	
Weight	$\frac{\text { Moment }}{100}$	Weight	$\frac{\text { Moment }}{100}$
120	102	120	145
130	110	130	157
140	119	140	169
150	128	150	182
160	136	160	194
170	144	170	206
180	153	180	218
190	162	190	230
200	170	200	242

W\&B Tables

- Same procedure for finding moments is used for rear seats, usable fuel, baggage or 5th seat occupant, auxiliary wing tank fuel, and oil
- The weight of the oil and its moment are included in this airplane's basic empty weight
- Do not include oil in this weight and balance problem

W\&B Tables

USEFUL LOADS WEIGHTS \& MOMENTS

Basic Empty Weight ~ 2015 MOM / 100~1554

MOMENT LIMITS vs WEIGHT
Moment limits are based on the following weight and center of gravity limit data (landing gear down).

WEIGHT CONDITION	FORWARD CG LIMIT	AFT CG LIMIT
2950 lb (takeoff	82.1	84.7
or landing)		
2525 lb	77.5	85.7
2475 lb or less	77.0	85.7

- Basic empty weight and its moment divided by the reduction factor of 100
- Forward and aft CG limits for variable weight conditions

Aircraft Empty Weight \& Arm

- The loading conditions and empty weight of a particular aircraft may differ from that found in the AFM/POH because modifications or equipment changes may have been made
- W\&B records for each particular airplane provide the empty weight, arm, and moment

EPRFBO

- What items do you include in the FAA weight and balance calculations?
- Every Pilot
Regrets
Fying
Barely
Overweight
- When given a weight and balance problem to solve, list these letters
- Write W \times A $=$ M

WEIGHT \& BALANCE FORMAT

 (Weight \times Arm $=$ Moment across the top of the page

W/B Problem - Table

- Determine if the airplane's weight and balance is within safe limits:
- Front seat occupants: 320 pounds
- Rear seat occupants: 295 pounds
- Fuel (main wing tanks): 44 gallons
- Baggage: 56 pounds

WEIGHT \& BALANCE FORMAT

W/B Problem - Table

- Step 1: Find the basic empty weight and its moment
- Unique to each airplane and located in the Airplane Flight Manual
- Basic Empty Weight: 2015 Moment/100: 1554

USEFUL LOADS WEIGHTS \& MOMENTS

Basic Empty Weight ~ 2015		
MOM / 100~1554		
MOMENT LIMITS vs WEIGHT		
Moment limits are based on the following weight and center of gravity limit data (landing gear down).		
WEIGHT CONDITION	FORWARD CG LIMIT	AFT CG LIMIT
2950 lb (takeoff or landing)	82.1	84.7
2525 lb	77.5	85.7
2475 lb or less	77.0	85.7

W/B Problem - Table

- Basic Empty Weight: 2015 Moment/100: 1554
- Insert into table

Weight \& Balance Problem Number

	Weight X	Arm $=$	Moment/100
E - Empty weight..........................	$2,015 \mathrm{lb}$in	1,554.0 in-lb
P - Pilot \& front seat occupants.......	lb	85 in	in-lb
R - Rear seat occupants.................	lb	121 in	in-lb
F - Fuel (6 lb/gal)..........................	lb	75 in	in-lb
B - Baggage................................	lb	140 in	in-lb
O-Oil (included in empty weight)..	.lbin	in-lb

W/B Problem - Table

- Step 2: Find the moment for 320 lb of front seat occupants
- Moment for $120 \mathrm{lb}: 102$ Moment for 200 lb : 170
- Front seat moment = 102 + $170=272$

USEFUL LOADS WEIGHTS \& MOMENTS

OCCUPANTS			
$\begin{aligned} & \text { FRONT SEATS } \\ & \text { ARM } 85 \end{aligned}$		REAR SEATS ARM 121	
Weight	$\frac{\text { Moment }}{100}$	Weight	$\frac{\text { Moment }}{100}$
120	102	120	145
100	110	100	15
140	119	140	169
150	128	150	182
160	136	160	194
170	144	170	206
180	153	180	218
100	102	100	200
200	170	200	242

© Rod Machado's
Private Pilot Handbook

W/B Problem - Table

- Front seat occupants' weight: 320 Front seat occupants' moment: 272
- Insert into table

Weight \& Balance Problem Number

	Weight X	Arm $=$	Moment/100
E - Empty weight..........................	2,015 lbin	1,554.0 in-lb
P - Pilot \& front seat occupants.......	320 lb	85 in	$272.0 \mathrm{in}-\mathrm{lb}$
R - Rear seat occupants................	lb	121 in	in-lb
F - Fuel (6 lb/gal)..........................	lb	75 in	in-lb
B - Baggage...............................	lb	140 in	in-lb
O-Oil (included in empty weight)..	lbin	in-lb

W/B Problem - Table

- Step 3: Find the moment for 295 lb of rear seat occupants
- Since the exact weight of our rear seat occupants doesn't appear in the table, we must multiply their weights times the arm of the rear seat (121")
- $295 \times 121=35,695$ Moment/100 = 35,695/ $100=$ 357
- Rear seat occupants' moment = 357
USEFUL LOADS WEIGHTS \& MOMENTS
OCCUPANTS

FRONT SEATS ARM 85		REAR SEATS ARM 121	
	$\frac{\text { Moment }}{10}$	Weight	$\frac{\text { Moment }}{100}$
120	102	120	145
130	110	130	157
140	119	140	169
150	128	150	182
160	136	160	194
170	144	170	206
180	153	180	218
190	162	190	230
200	170	200	242

W/B Problem - Table

- Rear seat occupants' weight: 295
- Rear seat occupants moment = 357
- Insert into table

Weight \& Balance Problem Number

	Weight X	Arm $=$	Moment/100
E - Empty weight..........................	2,015 lbin	1,554.0 in-lb
P - Pilot \& front seat occupants.......	320 lb	85 in	$272.0 \mathrm{in}-\mathrm{lb}$
R - Rear seat occupants................	295 lb	121 in	$357.0 \mathrm{in}-\mathrm{lb}$
F - Fuel (6 lb/gal)..........................	lb	75 in	in-lb
B - Baggage................................	lb	140 in	in-lb
O-Oil (included in empty weight)..	.lbin	in-lb

W\&B \#1

- Step 4: Find the weight and moment for 44 gal. of fuel
- Note: Use the listed weight of the fuel - not the gallons!
- Fuel weight: 264 Fuel moment: 198

USEFUL LOADS WEIGHTS \& MOMENTS

USABLE FUEL		
MAIN WING TANKS		
ARM 75		
Gallons	Weight	$\frac{\text { Moment }}{100}$
5	30	22
10	60	45
15	90	68
20	120	90
25	150	112
30	180	135
35	210	158
40	240	180
44	264	198

W/B Problem - Table

- Fuel weight: 264 Fuel moment: 198
- Insert into table

Weight \& Balance Problem Number

	Weight X	Arm $=$	Moment/100
E - Empty weight..........................	2,015 lbin	1,554.0 in-lb
P - Pilot \& front seat occupants.......	320 lb	85 in	$272.0 \mathrm{in}-\mathrm{lb}$
R - Rear seat occupants.................	295 lb	121 in	$357.0 \mathrm{in}-\mathrm{lb}$
F - Fuel (6 lb/gal)..........................	264 lb	75 in	198.0 in-lb
B - Baggage................................	i lb	140 in	in-lb
O-Oil (included in empty weight)..	.lbin	in-lb

© Rod Machado's
Private Pilot Handbook

W/B Problem - Table

- Step 5: Find the moment for the baggage
- Since no moment is listed for 56 lb , multiply this times the arm of 140" \& divide by 100 to obtain the moment of the baggage
- $(56 \times 140) / 100=78.4$
- Baggage moment: 78.4

USEFUL LOADS WEIGHTS \& MOMENTS

W/B Problem - Table

- Baggage weight: 56
- Baggage moment: 78.4
- Insert into table

Weight \& Balance Problem Number

	Weight X	Arm $=$	Moment/100
E - Empty weight..........................	2,015 lbin	1,554.0 in-lb
P - Pilot \& front seat occupants.......	320 lb	85 in	$272.0 \mathrm{in}-\mathrm{lb}$
R - Rear seat occupants................	295 lb	121 in	$357.0 \mathrm{in}-\mathrm{lb}$
F - Fuel (6 lb/gal)..........................	264 lb	75 in	198.0 in-lb
B - Baggage................................	56 lb	140 in	78.4 in-lb
O-Oil (included in empty weight)..	.lbin	in-lb

W/B Problem - Table

- Step 6: The note says that oil is included in the basic empty weight, so we don't need to do anything here

USEFUL LOADS WEIGHTS \& MOMENTS

W/B Problem - Table

- Step 7: Add the total weight and the total moments

Weight \& Balance Problem Number

	Weight X	Arm $=$	Moment/100
E - Empty weight..........................	$2,015 \mathrm{lb}$in	1,554.0 in-lb
P - Pilot \& front seat occupants.......	320 lb	85 in	$272.0 \mathrm{in}-\mathrm{lb}$
R - Rear seat occupants..............	295 lb	121 in	$357.0 \mathrm{in}-\mathrm{lb}$
F - Fuel (6 lb/gal).........................	264 lb	75 in	$198.0 \mathrm{in}-\mathrm{lb}$
B - Baggage................................	56 lb	140 in	78.4 in-lb
O- Oil (included in empty weight)..lbinin-lb
Totals	2,950 lb		$2,459.4 \frac{\mathrm{in}-\mathrm{lb}}{100}$

W/B Problem - Table

- Step 8: Move the decimal place of the total moments two digits to the right to correct for the reduction factor of moment/100
- Step 9: Compute the CG by dividing the total moments by the total weight
- CG = 83.4 in

Weight \& Balance Problem Number 1

W/B Problem - Table

- Step 10: Determine if the CG and weight fall within acceptable limits
- Total weight: 2,950 lb
- CG of 83.4 in is within limits

USEFUL LOADS WEIGHTS \& MOMENTS

Basic Empty Weight ~2015
MOM / $100 \sim 1554$
MOMENT LIMIITS vs WEIGHT

W/B Problem - Table

- CG of 83.4 in is within limits

WEIGHT \& BALANCE PROBLEM NO. 1 VISUAL EXAMPLE

Graphical W\&B Chart

- No multiplication used in finding moments
- The loading graph has weights along the vertical axis and moments/1000 along the horizontal axis
- Reduction factor of 1000 is used for the moments, but will not factor into your computations

Graphical W\&B Chart

- To find the moments for specific weights proceed horizontally along the weight lines
- When reaching the desired diagonal line (pilot, passenger, fuel or baggage) drop straight down to find the moments

Graphical W\&B Chart

- When the total moments and weights are totaled, proceed to the Center of Gravity/Moment Envelope chart
- Compare weights and moments to see if they fall within the envelope
- This airplane has both a normal and utility category envelope
- The CG must fall within the utility CG envelope for certain flight operations to be performed (such as spins)

W/B Problem - Graph

- Using the airplane loading information determine if the airplane is within its proper CG limits
- Empty weight/CG given
- Find moments for:

Front seat
Rear seat
Fuel (38 gallons)

- Bottom of chart shows Note 2: Engine Oil $8 \mathrm{qt}=15 \mathrm{lb}$ at -0.2 Moment/1000

Weight \& Balance Problem No. 6
Using the loading graph in Figure 21 A and the center of gravity envelope in Figure 21B, determine if the airplane is within the proper CG limits based on the information below.

	Weight X	Arm $=$	Moment/1000
E - Empty weight	$1,350 \mathrm{lb}$in	51.5
P - Pilot \& front seat occupants	310 lbin
R - Rear seat occupants.................	96 lbin
F - Fuel (38 gallons)lbin	...
B - Baggagelbin
O-Oil (8 quarts)lbin	-0.2

Solution To Problem No. 6
Step 1. Using the loading graph in Figure 21A, find the individual moments for the weights listed below. Remember that the oil weighs $7.5 \mathrm{lb} / \mathrm{gal}$. Eight quarts of oil equals two gallons or 15 lb total. The oil moment is negative indicating that it is ahead of the datum line.

	Weight X	Arm $=$	Moment/1000
E - Empty weight	1,350 lbin	51.5
P - Pilot \& front seat occupants	310 lbin	11.5
R - Rear seat occupants	96 lbin	7.0
F - Fuel 38 gal. ($6 \mathrm{lb} \times 38 \mathrm{gal}=228 \mathrm{lb}$)	228 lbin	11.0
B - Baggage	(no bags) lbin
O - Oil (8 quarts)	15 lbin	-0.2
Step 2. Add the totals Totals	1,999 lb		$\begin{array}{r} 80.8 \mathrm{lb}-\mathrm{in} \\ 1000 \end{array}$

W/B Problem - Graph

- Find moments for: Front seat: 11.5 Rear seat: 7.0

Fuel (38 gallons)
Weight: $38 \times 6=228 \mathrm{lb}$ Fuel moment: 11.0

- Total Weight and Moment columns Total Weight: 1,999 lb Total Moment: 80.8 inlb/1000

	Weight X Arm $=$ Moment/1000		
E - Empty weight	1,350 lbin	51.5
P - Pilot \& front seat occupants	310 lbin	11.5
R - Rear seat occupants	96 lbin	7.0
F - Fuel 38 gal. ($6 \mathrm{lb} \times 38 \mathrm{gal}=228 \mathrm{lb}$)	228 lbin	11.0
B - Baggage	(no bags) lb	in	
O - Oil (8 quarts)	15 lbin	-0.2
Step 2. Add the totals Totals	1,999 lb		$\begin{array}{r} 80.8 \mathrm{lb}-\mathrm{in} \\ 1000 \end{array}$

W/B Problem - Graph

- Total Weight: 1,999 lb Total Moment: 80.8 inlb/1000
- Find intersection of 1,999 and 80.8
- Result is within Utility Category

W/B Problem - Graph 2

- Determine the maximum amount of baggage that can be carried in the airplane after all the other items have been loaded
- Empty weight/CG given
- Find moments for: Front seat Rear seat Fuel (30 gallons)
- Bottom of chart shows Note 2: Engine Oil 8 qt = 15 lb at
-0.2 Moment/1000

WEIGHT AND BALANCE PROBLEM NO. 7

	Weight X Arm $=$ Moment/1000		
E - Empty weight	1,350 lbin	51.5
P - Pilot \& front seat occupants	250 lbin
R - Rear seat occupants................	400 lbin
F - Fuel (30 gallons)lbin
B - Baggagelbin
O-Oil (8 quarts)	15 lbin	-0.2

SOLUTION TO PROBLEM NO. 7

	Weight X	Arm $=$	Moment/1000
E - Empty weight	1,350 lbin	51.5
P - Pilot \& front seat occupants	250 lbin	9.3
R - Rear seat occupants	400 lbin	29.3
F - Fuel 30 gal. ($6 \mathrm{lb} \times 30 \mathrm{gal}=180 \mathrm{lb}$)	180 lbin	8.7
B - Baggage (this is unknown).......	? lbin	?
O- Oil (8 quarts)	15 lbin	-0.2
Step 2. Add the totals Totals	2,195 lb		$98.6 \frac{\mathrm{lb}-\mathrm{in}}{1000}$

W/B Problem - Graph 2

- Find moments for: Front seat: 9.3 Rear seat: 29.3

Fuel (30 gallons)
Weight: $30 \times 6=180 \mathrm{lb}$
Fue moment: 8.7

- Total Weight and Moment columns Total Weight: 2,195 lb Total Moment: 98.6 inlb/1000

	Weight X Arm = Moment/1000		
E - Empty weight	1,350 lbin	51.5
P - Pilot \& front seat occupants	250 lbin	9.3
R - Rear seat occupants	400 lbin	29.3
F - Fuel 30 gal. ($6 \mathrm{lb} \times 30 \mathrm{gal}=180 \mathrm{lb}$)	180 lbin	8.7
B - Baggage (this is unknown).......	? lbin	?
O- Oil (8 quarts)	15 lbin	-0.2
Step 2. Add the totals Totals	2,195 lb		$98.6 \frac{\mathrm{lb}-\mathrm{in}}{1000}$

W/B Problem - Graph 2

- Total Weight: 2,195 lb
- The airplane's maximum allowable gross weight is 2,300 lb (upper limit of the CG/Moment Envelope)
- Find the current loaded weight of the airplane and subtract that from the maximum allowable weight:
- 2,300-2,195 = 105 lb
- Baggage: 105 lb

W/B Problem - Graph 2

- Baggage: 105 lb
- Find moments for: Baggage: 10.0
- Add the weight of the baggage and its moment to the totals
- Total Weight: 2,195 + $105=2,300 \mathrm{lb}$ Total Moment: 98.6 + $10.0=108.6$

	Weight X	Arm $=$	Moment/1000
E - Empty weight ...	1,350 lbin	51.5
P - Pilot \& front seat occupants	250 lbin	9.3
R - Rear seat occupants	400 lbin	29.3
F - Fuel $30 \mathrm{gal} .(6 \mathrm{lb} \times 30 \mathrm{gal}=180 \mathrm{lb})$	180 lbin	8.7
B - Baggage (this is unknown).......	? lbin	?
O-Oil (8 quarts)	15 lbin	-0.2
Step 2. Add the totals Totals	2,195 lb		$98.6 \frac{\mathrm{lb}-\mathrm{in}}{1000}$

W/B Problem - Graph 2

- Total Weight: 2,195 + $105=2,300 \mathrm{lb}$ Total Moment: 98.6 + $10.0=108.6$
- The airplane is just barely within its proper CG limits (at the upper edge of the envelope)

W/B Problem - Graph 3

- Determine the maximum amount of fuel that can be carried aboard the aircraft for takeoff
- Find the current loaded weight of the airplane without fuel and subtract that from the maximum weight allowable for that airplane
- The difference is the amount of fuel that can be carried on board

SOLUTION TO PROBLEM NO. 8

Fig. 26	Weight X Arm $=$ Moment/1000		
E-Empty weight .	1,350 lbin	51.5
P - Pilot \& front seat occupants	340 lbin	12.6
R - Rear seat occupants	310 lbin	22.6
F - Fuel 38 gal. (6lb $\times 38 \mathrm{gal}=228 \mathrm{lb}$)	? lbin	?
B - Baggage	45 lbin	4.2
O - Oil (8 quarts)	15 lbin	-0.2
Totals	2,060 lb		$90.7 \frac{\mathrm{Ib}-\mathrm{in}}{1000}$

W/B Problem - Graph 3

- Determine the maximum amount of fuel that can be carried aboard the aircraft for takeoff
- Empty weight/CG given
- Find moments for:

Front seat
SOLUTION TO PROBLEM NO. 8

Fig. 26	Weight X Arm $=$ Moment/1000		
E - Empty weight	1,350 lbin	51.5
P - Pilot \& front seat occupants	340 lbin	12.6
R - Rear seat occupants	310 lbin	22.6
F - Fuel 38 gal. ($6 \mathrm{lb} \times 38 \mathrm{gal}=228 \mathrm{lb}$)	? lbin	?
B - Baggage	45 lbin	4.2
O-Oil (8 quarts)	15 lbin	-0.2
Totals	2,060 lb		$90.7 \frac{\mathrm{lb}-\mathrm{in}}{1000}$

Rear seat
Baggage

- Bottom of chart shows

Note 2: Engine Oil 8 qt = 15 lb at -0.2 Moment/1000

W/B Problem - Graph 3

- Find moments for: Front seat: 12.6 Rear seat: 22.6 Baggage: 4.2
- Total Weight and Moment columns Total Weight: 2,060 lb Total Moment: 90.7

Fig. 26	Weight X Arm $=$ Moment/1000		
E - Empty weight	$1,350 \mathrm{lb}$in	51.5
P - Pilot \& front seat occupants	340 lbin	12.6
R - Rear seat occupants	310 lbin	22.6
F - Fuel 38 gal. ($6 \mathrm{lb} \times 38 \mathrm{gal}=228 \mathrm{lb})$? lbin	?
B - Baggage	45 lbin	4.2
O- Oil (8 quarts)	15 lbin	-0.2
Totals	2,060 lb		$90.7 \frac{\mathrm{lb}-\mathrm{in}}{1000}$

W/B Problem - Graph 3

- Total Weight: 2,060 lb
- The airplane's maximum allowable gross weight is 2,300 lb (upper limit of the CG/Moment Envelope)
- Find the current loaded weight of the airplane and subtract that from the maximum allowable weight:
-2,300 - 2,060 = 105 lb

- Fuel: 240 lb

W/B Problem - Graph 3

- Fuel: 240 lb
- Find moments for: Fuel: 11.5
- Add the weight of the baggage and its moment
 to the totals
- Total Weight: 2,060 + $240=2,300 \mathrm{lb}$
Total Moment: 90.7 + $11.5=102.2$

Fig. 26	Weight X Arm $=$ Moment/1000		
E - Empty weight	1,350 lbin	51.5
P - Pilot \& front seat occupants	340 lbin	12.6
R - Rear seat occupants	310 lbin	22.6
F - Fuel $38 \mathrm{gal} .(6 \mathrm{lb} \times 38 \mathrm{gal}=228 \mathrm{lb})$? lbin	?
B - Baggage	45 lbin	4.2
O - Oil (8 quarts)	15 lbin	-0.2
Totals	2,060 lb		$90.7 \frac{\mathrm{lb}-\mathrm{in}}{1000}$

W/B Problem - Graph 3

- Total Weight: 2,060 + 240 $=2,300 \mathrm{lb}$ Total Moment: 90.7 + $11.5=102.2$
- Center of gravity is within proper limits for safe flight

W/B Problem - Graph 3 Another Way

- Cessna aircraft use the Center of Gravity Limits Chart
- Total Weight: 2,300 lb Total Moment: 102.2/1000 in lb
- Calculate airplanes CG by dividing total moments by total weight
- CG $=(102.2 \times 1000) / 2,300=$ 44.43
- Airplane falls within allowable CG limits

FAA Exam Charts

- Empty weight data and fuel chart

FAA Exam Charts

- Front and rear occupants' charts

Occupants				
Front seats			Rearseats	
ARM 85 inches			Fwd Position ARM 111 inches	Alt Position ARM 136 inches
Weight (pounds)	Moment (in-lb)	Weight (pounds)	Moment (in-lb)	Moment (in-lb)
120	102	120	133	163
130	111	130	144	177
140	119	140	155	190
150	128	150	167	204
160	136	160	178	218
170	145	170	189	231
180	153	180	200	245
190	162	190	211	258
200	170	200	222	273

FAA Exam Charts

- Fuel chart

Fuel					
Gallons	$\begin{array}{c}\text { Weight } \\ \text { (pounds) }\end{array}$	$\begin{array}{c}\text { Moment } \\ \text { (in-ib) }\end{array}$	Gallons	$\begin{array}{c}\text { Weight } \\ \text { (pounds) }\end{array}$	

(in-lb)\end{array}\right]\)

FAA Exam Charts

- Baggage charts

Baggage		Baggage		Baggage	
ARM 150		ARM 150		ARM 150	
Weight (pounds)	Moment (in-lb)	Weight (pounds)	Moment (in-lb)	Weight (pounds)	Moment (in-lb)
10	15	110	165	210	315
20	30	120	180	220	330
30	45	130	195	230	345
40	60	140	210	240	360
50	75	150	225	250	375
60	90	160	240	260	390
70	105	170	255	270	405
80	120	180	270		
90	135	190	285		
100	150	200	300		

FAA Exam Charts

- Weight and balance envelope allows you to match the airplane's total weights with total moments and evaluate the airplane's center of gravity condition

Practice \#1

If an aircraft is loaded 90 pounds over maximum certificated gross weight and fuel (gasoline) is drained to bring the aircraft weight within limits, how much fuel should be drained?

- Total weight to be removed: 90 lb
- Weight per gallon of gasoline: 6 gal/lb
- Calculate the amount of gasoline to be drained:
- Gallons $=$ Pounds \div Pounds/Gallon
- $90 \div 6=15$ gallons

Practice \#2

- Given the following information, how far aft is the CG located from the datum? Full fuel

ITEM	WEIGHT	ARM	MOMENT
Empty Weight	1495	101.4	$151,593.0$
Pilot \& Passenger	380	64	
Fuel (30 gal)		96	

Practice \#2

ITEM	WEIGHT	ARM	MOMENT
Empty Weight	1495	101.4	$151,593.0$
Pilot \& Passenger	380	64	$24,320.0$
Fuel (30 gal)	180	96	$17,280.0$

Practice \#2

ITEM	WEIGHT	ARM	MOMENT
Empty Weight	1,495	101.4	$151,593.0$
Pilot \& Passenger	380	64	$24,320.0$
Fuel (30 gal)	180	96	$17,280.0$
Total	$2,055.0$	94.01	$193,193.0$

Knowledge Check

How can you fix having a CG forward of limit and under maximum weight?
A. Increase weight forward of the CG
B. Move weight forward of the CG
C. Adding weight aft of CG or moving weigh aft of CG
D. Reducing weight aft of CG or move weight forward of CG

Knowledge Check

How can you fix having a CG forward of limit and under maximum weight?
A. Increase weight forward of the CG
B. Move weight forward of the CG
C. Adding weight aft of CG or moving weigh aft of CG
D. Reducing weight aft of CG or move weight forward of CG

Knowledge Check

Which is the formula for CG?
A. (Total Moment) / (Total Weight)
B. (Total Weight) / (Total Moment)
C. (Arm \times Total Moment) / (Total Weight)
D. (Total Weight) / (Arm \times Total Moment)

Knowledge Check

Which is the formula for CG?
A. (Total Moment) / (Total Weight)
B. (Total Weight) / (Total Moment)
C. (Arm x Total Moment) / (Total Weight)
D. (Total Weight) / (Arm x Total Moment)

Knowledge Check

How much does a gallon of AVGAS (100LL) weigh?
A. 7 lbs .
B. 5 lbs .
C. 6 lbs .
D. 9 lbs .

Knowledge Check

How much does a gallon of AVGAS (100LL) weigh?
A. 7 lbs .
B. 5 lbs .
C. 6 lbs .
D. 9 lbs .

Knowledge Check

An increase in airplane weight will result in what performance?
A. An increase in performance
B. Depends on CG location, forward or aft of limits
C. A decrease in performance
D. Not enough information

Knowledge Check

An increase in airplane weight will result in what performance?
A. An increase in performance
B. Depends on CG location, forward or aft of limits
C. A decrease in performance
D. Not enough information

Knowledge Check

As AOA increase, the center of pressure moves aft?
A. True
B. False

Knowledge Check

As AOA increase, the center of pressure moves aft?
A. True
B. False

Knowledge Check

If an airplane has a maximum certificated takeoff weight of 2,000 lbs. and is loaded to MTOW, but is exposed to 2 g of forces, is it within limits? (2 g places a force of $4,000 \mathrm{lbs}$)
A. True
B. False

Knowledge Check

If an airplane has a maximum certificated takeoff weight of 2,000 lbs. and is loaded to MTOW, but is exposed to 2 g of forces, is it within limits? (2 g places a force of $4,000 \mathrm{lbs}$)
A. True
B. False

